Школа должна учить мыслить!

Притча эта, кажется, не нуждается в особо пространных комментариях и выводах. Автор ее – великий диалектик Гегель – иллюстрирует ею очень простое и глубоко верное, хотя и парадоксальное, на первый взгляд, утверждение: «Кто мыслит абстрактно? – Необразованный человек, отнюдь не образованный .»

Человек, обладающий умственной культурой, никогда не мыслит абстрактно по той причине, что это – слишком легко, по причине «внутренней пустоты и никчемности этого занятия». Он никогда не успокаивается на тощем словесном определении («убийца» и т.п.), а старается всегда рассмотреть самую вещь во всех ее «опосредованиях», связях и отношениях и притом – в развитии, причинно обусловленном со стороны всего породившего эту вещь мира явлений.

Такое-то – культурное, грамотное и гибкое предметное мышление философия и называет «конкретным мышлением». Такое мышление всегда руководится собственной «логикой вещей», а не узкокорыстным (субъективным) интересом, пристрастием или отвращением. Оно ориентировано на объективные характеристики явления, на раскрытие их необходимости – закона, а не на случайно выхваченные, не на бросающиеся в глаза мелочи, будь они в сто раз «нагляднее».

Абстрактное же мышление руководится общими словечками, зазубренными терминами и фразами, и потому в богатом составе явлений действительности усматривает очень и очень мало. Только то, что «подтверждает», дает «наглядное доказательство застрявшей в голове догме, общему представлению, а часто – и просто эгоистически узкому « интересу». [38]

«Абстрактное мышление» – вовсе не достоинство, как это иногда думают, связывая с этим термином представление о «высокой науке» как о системе архинепонятных «абстракций», парящих где-то в заоблачных высях. Это представление о науке свойственно лишь тем, кто о науке имеет представление с чужих слов, знает терминологическую поверхность научного процесса и не вникал в его суть.

Наука, если это действительно наука, а не система квазинаучных терминов и фраз, есть всегда выражение (отражение) действительных фактов , понятых в их собственной связи. «Понятие» – в отличие от термина, требующего простого заучивания, – это синоним понимания существа фактов. Понятие в этом смысле всегда конкретно – в смысле предметно. Оно вырастает из фактов, и только в фактах и через факты имеет смысл, «значение», содержание.

Таково и мышление математика, которое невольно оскорбляют, желая похвалить словечком «абстрактное». «Абстрактно» в этом мышлении лишь терминологическое одеяние «понятий» – лишь язык математики. И если из всей математики человек усвоил лишь ее «язык» – это и значит, что он усвоил ее абстрактно. Значит – не понимая и не усматривая ее действительного предмета, и не умея самостоятельно двигаться по его строгой логике – не видя реальности под специально-математическим углом зрения, а видя только обозначающие ее знаки. Может быть еще и «наглядные примеры», иллюстрирующие «применение» этих знаков.

Действительный математик мыслит тоже в полной мере конкретно, как и физик, как и биолог, как и историк. Он рассматривает тоже не абстрактные закорючки, а самую настоящую действительность только под особым углом зрения, под особым аспектом, свойственным математике. Это умение видеть окружающий мир под углом зрения количества и составляет специальную черту мышления математика.

Человек, который этого не умеет, – не математик, а лишь счетчик-вычислитель, осуществляющий лишь штампованные вспомогательные операции, но не развитие математической науки.

И умение воспитать математика, то есть человека, умеющего мыслить в области математики, – далеко не то же, [39] что воспитать у человека умение считать, вычислять, решать «типовые задачи». Школа же наша ориентируется, увы, чаще на последнее. Ибо это «проще». А потом мы сами начинаем горевать по тому поводу, что «способные» к математическому мышлению люди – такая редкость, один-два на сорок . Тогда мы начинаем искусственно «отбирать» их, удивляясь их «природной талантливости» и приучая их самих к отвратительному самомнению, к высокомерию «избранных», к самолюбованию, к обособлению от «бесталанной черни» .

Между тем математика как наука ничуть не сложнее других наук, которые не кажутся столь таинственно-абстрактными. В известном смысле математическое мышление даже проще, легче. Это видно хотя бы из того, что математические «таланты» и даже «гении» развиваются в таком возрасте, который в других науках явно не дает возможности даже просто выйти на «передний край». Математика предполагает меньший и более простой «опыт» в отношении окружающего мира, чем та же политическая экономия, биология или ядерная физика. Посему в этих областях знания «гения» в пятнадцатилетнем возрасте и не встретишь.

Перейти на страницу: 10 11 12 13 14 15 16 17 18 19 20


Разделы

Новое на сайте

Copyright (c) 2025 www.teachguide.ru. All rights reserved.