О методике обучения учащихся решению нестандартных алгебраических задач.

Какая задача называется нестандартной? «Нестан­дартные задачи — это такие, для которых в курсе математики не имеется общих правил и положений, определяющих точную программу их решения» (Фрид­ман Л. М., Турецкий Е. Н. Как научиться решать задачи.— М.: Просвещение, 1989.— С. 48.).

Однако следует заметить, что понятие «нестандартная задача» является относительным. Одна и та же задача может быть стандартной и нестандартной, в зависимости от того, знаком решающий задачу со способами решения задач такого типа или нет. Например, задача «Представьте выражение 2х2 + 2у2 в виде суммы двух квадратов» ([5], № 1264) является для учащихся нестандартной до тех пор, пока учащиеся не познакомились со способами решения таких задач. Но если после решения этой задачи учащимся предложить несколько аналогичных задач, такие задачи становятся для них стандартными. Аналогично задача «При каких натуральных значениях х и у верно равенство 3х + 7у = 23?» ([5], № 1278) является нестандартной для учащихся VII класса до тех пор, пока учитель не познакомит их со способами решения таких задач (что, кстати сказать, можно сделать при обучении учащихся математике уже в VI классе).

Таким образом, нестандартная задача — это задача, алгоритм решения которой учащимся неизвестен, то есть учащиеся не знают заранее ни способа ее решения, ни того, на какой учебный материал опирается решение.

К сожалению, иногда учителя единственным способом обучения решению задач считают показ способов решения определенных видов задач, после чего следует порой изнурительная практика по овладению ими. Нельзя не согласиться с мнением известного американского математика и методиста Д. Пойа, что, если преподаватель математики «заполнит отведенное ему учебное время натаскиванию учащихся в шаблонных упражнениях, он убьет их интерес, затормозит их умственное развитие и упустит свои возможности».

Как же помочь учащимся научиться решать нестандартные задачи?

Универсального метода, позволяющего решить любую нестандартную задачу, к сожалению, видимо нет, так как нестандартные задачи в какой-то степени неповторимы. Однако опыт работы многих передовых учителей, добивающихся хороших результатов в математическом развитии учащихся как у нас в стране, так и за рубежом, позволяет сформулировать некоторые методические приемы обучения учащихся способам решения нестандартных задач.

В литературе (отечественной и зарубежной) методические принципы обучения учащихся умением решать нестандартные задачи описаны неплохо. Наиболее удачными, на наш взгляд, в этом отношении являются книги Д. Пойа «Как решать задачу», «Математическое открытие», «Математика и правдоподобные рассуждения» Л. М. Фридмана, Е. Н. Турецкого «Как научиться решать задачу», Ю. М. Колягина, В. А. Оганесяна «Учись решать задачи». И хотя некоторые из них адресованы учащимся, желающим научиться решать задачи, они, без сомнения, могут быть использовании учителями при обучении школьников умениям решать нестандартные задачи.

Прежде всего отметим, что научить учащихся решать задачи (в том числе и нестандартные) можно только в том случае, если у учащихся будет желание их решать, то есть если задачи будут содержательными и интересными с точки зрения ученика. Поэтому проблема первостепенной важности, стоящая перед учителем,— вызвать у учащихся интерес к решению той или иной задачи. Необходимо тщательно отбирать интересные задачи и делать их привлекательными для учащихся. Как это сделать — решать самому учителю. Наибольший интерес вызывают у учащихся задачи, взятые из окружающей их жизни, задачи, естественным образом связанные со знакомыми учащимся вещами, опытом, служащие понятной ученику цели.

Учитель, как нам кажется, должен уметь находить интересные для учащихся задачи и своевременно предлагать их. Приведем примеры.

Учитель математики обратил внимание учащихся, что в фильме «Возвращение с орбиты», показанном накануне по телевизору, главный герой, узнав, что его невесте 24 года, говорит ей: «Когда тебе будет столько лет, сколько мне сейчас, мне будет 60». Вопрос учителя «Сколько лет герою фильма» вызвал у всех учащихся VII—VIII классов желание решить предложенную задачу, хотя от некоторых она потребовала настоящего усилия.

Другой пример. Желая научить учащихся решать в натуральных числах уравнения вида ах + by = с, можно, конечно, предложить учащимся выполнить упражнение № 1278 из [5] (При каких натуральных значениях х и у верно равенство 3х+7у=23?). Но, как показывают наши наблюдения, учащиеся легче и с бульшим интересом учатся способам решения таких уравнений, если им предложить, например, следующую задачу:

Перейти на страницу: 1 2 3


Разделы

Новое на сайте

Copyright (c) 2025 www.teachguide.ru. All rights reserved.